Theoretical Insight into the New Astrochemistry Hypothesis of Mixed Aromatic Aliphatic Organic Nanoparticles (MAON)

SeyedAbdolreza Sadjadi
November 14, 2015
Space Astronomy Laboratory
The University of Hong Kong
ssadiadi@hku.hk
http://www.scifac.hku.hk/kwok/sal/abdi.html

Scientific Background

Observations and proposed models

Annual meeting of the Hong Kong Astrophysical Society

MAON

Kwok and Zhang, Nature, 479:80 (2011)
Sadjadi, Zhang and Kwok, ApJ, 807:95 (2015 July 1)

MAONs Infrared Fingerprint

Simulated IR spectra for $\mathrm{C}_{155} \mathrm{H}_{240}$, DFT/Drude, $\mathrm{T}=500 \mathrm{~K}$

Sadjadi, Zhang and Kwok, ApJ, 807:95 (2015 July 1)

MAONs Infrared Fingerprint

Simulated IR spectra for 40 MAONs, DFT/Drude, $T=500 \mathrm{~K}$

Sadjadi, Zhang and Kwok, ApJ, 807:95 (2015 July 1)

PAHs Infrared Fingerprint

Sadjadi, Zhang and Kwok, ApJ, 807:95 (2015 July 1)

MAONs Vibrational Motions

MAONs Vibrational Motions

MAONs Vibrational Motions

MAONs Vibrational Motions

Vibrational motion at $11.16 \mu \mathrm{~m}$

MAONs Vibrational Motions

MAONs Vibrational Motions

Vibrational motion at $19.06 \mu \mathrm{~m}$ (32% aromatic, 78% Aliphatic)

Flow Chart

The backbone of our theoretical approach

Sadjadi, Zhang and Kwok, ApJ, 801:34 (2015 March 1)

Conclusions

- MAON model is introduced as the individual benzene rings, connected by aliphatic hydrocarbon chains.
- MAON is very simple in bonding, but it is complex in its structure.
- MAON shows discrete and consistent IR bands at different molecular sizes.

Acknowledgments

- I am grateful to my supervisor: Professor Sun Kwok

and my two Colleagues:

Dr. Chih-hao Hsia

